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I found a paper about Predicting Network Traffic using RBFNN.  I wrote this back in December
2011 regarding Radial-basis Function Neural Networks (RBFNN). Currently, new trends in
artificial intelligence are key and RBF-Kernels are in use by machine learning methods and
systems.

" Fractal time series can be predicted using radial basis function neural networks
(RBFNN). We showed that RBFNN effectively predict the behavior of self-similar
patterns for the cases where their degree of self-similarity (H) is close to the unity. In
addition, we observed the failure of this method when predicting fractal series when H is
0.5. "
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s Hurst-parameter is closer to 0.5 then RBFF are useless to predict fractal behavior, as shown,
the randomness of a Hurst parameter at 0.5

For the BRW (brown noise, 1/f²) one gets

Hq = ½,

and for pink noise (1/f)

        Hq = 0.

 

Obviously, the Hurst Parameter or Hurst Exponent is nothing but a degree of  "fractality" for a
data set. In General, we don't expect to predict noise, there is no practical use of for this
particular case.  we are using the Hurst parameter to see when the RBFF is capable of finding a
right response to the data being captured or introduced to the set.

Conclusions

Fractal time series can be predicted using RBFNN when the degree of self-similarity, Hurst
parameter, is around 0.9. The mean square error (MSE) of the real and predicted sequences
was measured to be 0.36 as a minimum. Meanwhile, fractal series with H=0.5 cannot be
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predicted as well as the ones with higher values of H.

It was expected that due the clustering process, a better approximation could be achieved using
a greater value of M and small dimensionality, however behavior was not observed and in
contrast, the performance had and optimal point at M=50 using d=2. This phenomena would
require a deeper study and it is out of the scope of this class report.

Future Work

I am retaking this work and combining it with all BigData, this should be co-rrelated with RF and
other systems and related research.

Introduction Big Data in RF Analysis | Hadoop: Tutorial and BigData

PREDICTION OF FRACTAL TIME SERIES USING RADIAL
BASIS FUNCTION NEURAL NETWORKS

Fractal time series can be predicted using radial basis function neural networks (RBFNN). We
showed that RBFNN effectively predict the behavior of self-similar patterns for the cases where
their degree of self-similarity (H) is close to the unity. In addition, we observed the failure of this
method when predicting fractal series when H is 0.5.

Introduction
We will first review the meaning of the term fractal. The concept of a fractal is most often associated with geometrical objects satisfying two criteria: self -similarity and fractional dimensionality. Self- similarity means that an object is composed of sub-units
and sub-sub-units on multiple levels that (statistically) resemble the structure of the whole object. Mathematically, this property should hold on all scales. However, in the real world, there are necessarily lower and upper bounds over which such self-similar
behavior applies. The second criterion for a fractal object is that it has a fractional dimension. This requirement distinguishes fractals from Euclidean objects, which have integer dimensions. As a simple example, a solid cube is self-similar since it can be
divided into sub-units of 8 smaller solid cubes that resemble the large cube, and so on. However, the cube (despite its self- similarity) is not a fractal because it has an (=3) dimension. [1]

The concept of a fractal structure, which lacks a characteristic length scale, can be extended to the analysis of complex temporal processes. However, a challenge in detecting and quantifying self-similar scaling in complex time series is the following:
Although time series are usually plotted on a 2- dimensional surface, a time series actually involves two different physical variables. For example, in Figure 1. the horizontal axis represents ``time,'' while the vertical axis represents the value of the variable
that changes over time. These two axes have independent physical units, minutes and bytes/sec respectively (For example). To determine if a 2-dimensional curve is self-similar, we can do the following test: (i) take a subset of the object and rescale it to
the same size of the original object, using the same magnification factor for both its width and height; and then (ii) compare the statistical properties of the rescaled object with the original object. In contrast, to properly compare a subset of a time series with
the original data set, we need two magnification factors (along the horizontal and vertical axes), since these two axes represent different physical variables.
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Fig. 1. Fractal time series

In the different windows observed, h1 and h2, we can observe a linear dependency between the
variances and windows sizes. In other words, the slope a is determined by (log(s2) –
log(s1))/(log(h 1) – log(h2)). This slope value is also called Hurst parameter (H) and in general a
value of 0.5 indicates a completely brownian process, whereas 0.99 indicates highly fractal.

The research conducted by Sally Floyd and Vern Paxon [2] concluded that network traffic is
fractal in nature and H>0.6. Therefore, RBFNN could be used in this field for network traffic
control and analysis. Indeed, we made use of Vern Paxson’s [3,4] method to generate a fractal
trace based upon the fractional gaussian noise approximation. The inputs of the Paxson’s
program developed are: media, variance, Hurst parameter, and the amound of data. We
decided to maintain a media at zero, m = 0, and the variance, ?2=1, and 65536 points. Figures
2 and 3, depict the fractal time series at different sampling windows
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Fig. 2. Fractal sequence sampled at different intervals H=0.5, m =0 and s2 = 1

Fig 2. depicts the generated sampled used for training and testing of the GBRF. The signal is
composed of 65536 data samples, ranging between 4 and –4, although we only used 10000
points for training and 10000 points for testing. Similarly, Fig. 3 presents the histogram and fast
Fourier transform corresponding to the input in Fig. 2.

Fig. 3. Histogram and fast Fourier transform of the self-similar sequence H=0.5
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Fig. 4. Fractal sequence sampled at different intervals H=0.9, m =0 and s2= 1

In addition, Fig 4 and Fig 5 show the input data at H=0.9. Both plots show a big difference in the
frequency domain among the time series with different values of H. This difference allow us to
speculate that RBFNN will be able to perform much better than in the purely random case.

Fig. 5 Histogram and fast Fourier transform of the self-similar sequence H=0.9
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Radial basis functions

A radial basis function, like an spherical Gaussian, is a function which is symmetrical about a
given mean or center point in a multi-dimensional space [5]. In the Radial Basis Function Neural
Network (RBFNN) a number of hidden nodes with radial basis function activation functions are
connected in a

feed forward parallel architecture Fig 6.. The parameters associated with the radial basis
functions are optimized during training. These parameter values are not necessarily the same
throughout the network nor directly related to or constrained by the actual training vectors.
When the training vectors are presumed to be accurate ie. Non-stochastic, and it is desirable to
perform a smooth interpolation between them, then a linear combination of radial basis
functions can be found which gives no error at the training vectors. The method of fitting radial
basis functions to data, for function approximation, is closely related to distance-weighted
regression. As the RBFNN is a general regression technique it is suitable for both function
mapping and pattern recognition problems.

Fig. 6. Radial basis function representation with k-outputs, M-clusters and d-inputs.

The equation required by a Gaussian radial basis function (GRBF) equations are shown as
follows:
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In all cases, n ? {1, .. ,N}, or the number of patterns, while k ? {1, .., K} or the number of outputs,
and j ? { 1, .., M} or the number of clusters used on the network.

According to Bishop [6] the solution for the weight matrix is defined as follows:

W T = ?(?)+ T

where all these matrices are defined by:

W = {Wkj }

?= {? nj }, and ? nj = ? j (x
n)

T = {Tnk }, Tnk = t nk

And, finally, Y={Ynk }, Y=?WT

Therefore, the weight matrix can be calculated with the formula:

WT  = ? +T

Since ? is a non-squared matrix the pseudo inverse is required to calculate the matrix W.

RBFNN and radial basis functions implemented.

The input to the MATLAB code match up to a file generated by the fractal generator. The set of
input data of the fractal file had to be rearranged and organized such that the number of
inputs, D, stimulated M- GRBFs. The element D+1 of the sequence was considered as the
output. Hence, each sequence of D-inputs will produce one output, which is can be arranged as
follows:

{xi }= {{x[n], x[n ?1], x[n ? 2], x[n ? 3],..., x[n ? D]}

                              8 / 17

https://edwinhernandez.com/wp-content/uploads/2017/08/Equations0.png


Edwin Hernandez, PhD
Innovator, Expert Witness, Engineer,  Entrepreneur, Inventor
http://edwinhernandez.com

This set {x i} determines the output tkn , which is x[n+1]. This output is used for training of the
RBFNN.

Each term on the {xi} inputs, generates a set of mI and s j input values, where {j ? 1..M}, and
{i ? 1.. N/ (D-1)}. The data is subdivided in N/(MX(D-1)) clusters of D-dimension from
which mj and s j are calculated. This calculation was done at the cluster of data by first sorting
the data according to tkn or the expected outcome. By sorting the (xn} via tkn we will be able to
cluster the input hence each independent basis function will represent a cluster of inputs which
can generate a similar outcome.

Hence, it would be expected to have a better predictable value for bigger values of M, or by
decreasing the granularity of the cluster. For instance, with d=2, and M=100, given an training
set N=3000, we will have a cluster j=1

The cluster of size 10 will have a m1 and m2,, which are the medias of the 10 elements in the
first and second columns respectively. The variance is determined using all the elements in the
cluster, or both columns are rows. Hence, it would be expected that for a big cluster, or a small
value of M and a high- dimensionality this method lead to bigger error during the approximation.

Results and experimental prediction using radial basis
functions.

Once the {?} matrix is determine, as well as the weight vector W , we proceeded to test the
RBFNN with some input data.

 

Table 1. Variation of M and the mean square error of the training sample at different Hurst
parameters

Degree of Self- similarity
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Hurst Parameter
 

d-Dimension

 

M- GBRFs

 

0.9

 

0.5
 

2

 

10

 

0.396

 

0.508
 

20

 

0.369

 

0.507
 

50

 

0.349

 

0.514
 

100

 

0.352

 

0.521
 

200

 

0.727

 

0.546
 

4

 

10

 

0.430

 

0.511
 

20

 

0.410

 

0.512
 

50

 

0.380

 

0.523
 

100

 

0.372

 

0.537
 

200

 

0.384

 

0.565
 

8

 

10

 

0.501

 

0.524
 

20

 

0.516

 

0.533
 

50

 

0.466

 

0.566
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100 0.479 0.597
 

200

 

0.562

 

0.768
 

16

 

10

 

0.561

 

0.542
 

20

 

0.561

 

0.575
 

50

 

0.676

 

2.735
 

100

 

4.004

 

29.107
 

200

 

435.043

 

8.597

We made use of a sequence, as big as the training input (10000 points). Table 1 depicts the
results of the mean square error at different degrees of self-similarity as well as the number of
hidden nodes or basis functions used (M).

Fig 7. Error and comparison between predicted and real sampled signal for d=2
and M=50. Input signal for H=0.9, 10000 samples used for training

All the input sequences were compared between the original and the predicted input. The best
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prediction and smaller mean square error (MSE) was observed with d=2, M=50 and H=0.9. This

behavior can be shown also in the qualitative shape shown in Fig. 7. Where the predicted and
real sampled data are very similar and the predicted data follows the real sequence. Although
the magnitudes are missing, the RBFNN was able to produce a nice input.

Fig.8 . Error and comparison between predicted and real sampled signal for d=16 and
M=200. Input signal for H=0.9, 10000 samples used for training

Meanwhile, Fig. 8, shows the results obtained with H=0.9, M=200, d=16 where we observe that
there is

over-estimation on the predicted sequence, which makes the error grow significantly. Those
over estimations are not plotted in the figure but rounded between 10 to 20 in magnitude.

Notwithstanding, the MSE seems to grow to unreasonable values, qualitatively the shape of the
predicted sequence follows the real testing sample data.
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Fig 9. Error and comparison between predicted and real sampled signal for d=2
and M=20. Input signal for H=0.5, 10000 samples used for training

Besides the test executed to the input sequence with H=0.9, Fig. 9 and Fig. 10, depict the
behavior of the RBFNN under H=0.5 stimulation. Both plots show the poor performance of the
RBFNN when this type of stimulation was employed. In fact, Table 1, presents that the minimum
MSE was of 0.5, whereas with H=0.9 the minimum was around 0.3. We have to clarify that for
each data set used the RBFNN was trained and its weight matrix calculated using a set of the
same input pattern. The performance of the neural network was tested using a training pattern
using the same as in the training set.

As show in Fig. 10, the worst performance of the RBFNN was observed when using 16 inputs
(d=16) to determine the a predicted pattern and M=100. Although, the error is higher than the
MSE measured in Fig 9, qualitatively this shape seems to follow the real sequence used as
input.
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Fig 10. Error and comparison between predicted and real sampled signal for d=16
and M=100. Input signal for H=0.5, 10000 samples used for training

CONCLUSIONS

Fractal time series can be predicted using RBFNN when the degree of self-similarity, Hurst
parameter, is around 0.9. The mean square error (MSE) of the real and predicted sequences
was measured to be 0.36 as a minimum. Meanwhile, fractal series with H=0.5 cannot be
predicted as well as the ones with higher values of H.

It was expected that due the clustering process, a better approximation could be achieved using
a greater value of M and small dimensionality, however behavior was not observed and in
contrast, the performance had and optimal point at M=50 using d=2. This phenomena would
require a deeper study and it is out of the scope of this class report.

APPENDICES

MATLAB CODE USED FOR THE NEURAL NETWORK AND SELF
SIMILAR TRACE PRE - PROCESSING

% Fractal sequence processing
% © 2001 - Edwin Hernandez
% selfSimilar = input (' Input the name of the file with self-similar
% content ');
load selfSimilarH05; x_1 = 1:10;
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y_1 = size(10); x_2 = size(100); y_2 = size(100); x_3 = size(1000); y_3 = size(1000); x_4 =
size(10000); y_4 = size(10000); j_1=1;
j_2=1; j_3=1; j_4=1;
for i=1:10000,
if (mod(i, 1000) == 0) x_1(j_1) = i;
y_1(j_1) = selfSimilarH05(i); j_1 = j_1 + 1;
end
if (mod(i, 100) == 0) x_2(j_2) = i;
y_2(j_2) = selfSimilarH05(i); j_2 = j_2 + 1;
end
if (mod(i, 10) == 0) x_3(j_3) = i;
y_3(j_3) = selfSimilarH05(i); j_3 = j_3 + 1;
end
x_4(i) = i;
y_4(i) = selfSimilarH05(i); end

subplot(2,2,1); plot(x_1, y_1);
title('Sampled at 1000 sec', 'FontSize', 8 );
%xlabel('time (s)','FontSize', 8 );
ylabel('Data','FontSize', 8 );

subplot(2,2,2); plot(x_2, y_2);
title(' Sampled at 100 sec','FontSize', 8 );
%xlabel('time (s)','FontSize', 8 );
ylabel('Data ','FontSize', 8 );

subplot(2,2,3); plot(x_3, y_3);
title(' Sampled at 10 sec','FontSize', 8 ); xlabel('time (s)','FontSize', 8 );
ylabel('Data','FontSize', 8 );
subplot(2,2,4); plot(x_4, y_4);
title(' Sampled at 1 sec','FontSize', 8 ); xlabel('time (s)','FontSize', 8 );
ylabel('Data','FontSize', 8 );

pause
subplot(2,1,2), plot(log(abs(fft(y_4, 1024))));
title(' Fast fourier transform (1024 samples)','FontSize', 8); ylabel('log10', 'FontSize', 8);
xlabel('frequency domain', 'FontSize', 8);

subplot(2,1,1), hist(y_4,100); xlabel('Data in 100 bins','FontSize',8); ylabel('Samples','FontSize',
8);
title(' Histogram ','FontSize', 8);

pause H=20
for i=1:H-1,
x(i) = size(round(10000/H)); end
yk = size(round(10000/5));
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% 4 y 1 output to create Yk samples j=1;
load selfSimilarH09; for i=1:H:10000,
for k=0:H-2,
x1(j) = selfSimilarH09(i+k); end
yk(j) = selfSimilarH09(i+k+1); j=j+H;
end

subplot(5,1,1), plot(x1);
subplot(5,1,2), plot(x2);
subplot(5,1,3), plot(x3);
subplot(5,1,4), plot(x4);
subplot(5,1,5), plot(yk);
% Gaussian radial basis functions
% --------------------------------------------------------------------
% Edwin Hernandez
% Modified to sort the clusters and then find the Mu's and the sigmas.
% if M=100 I will sort all the clusters in 100 piles.

D=16;
M=200;
load selfSimilarH09 NDATA = 10000;
% get all the chunks and the T matrix
% out of all the inputs only 65500 I'll use k=1;
x = size(round(NDATA/(D+1)), D); t = size(round(NDATA/(D+1)));

for j=1:round(NDATA/(D+1)), for i=1:D,
x(j,i) = selfSimilarH09(k);
k=k+1; end k=k+1;
t(j) = selfSimilarH09(k); end

u = size(size(x), D+1); u = [x, t'];
u = sortrows(u, D+1);

x = u(1:size(x), 1:D);
[R,C]=size(x);
t = u(C*R+1:(C+1)*R)';
%pause;
%cwd = pwd;
%cd(tempdir);
%pack
%cd(cwd)

L = size(t);
cluster = floor(R*C/(M*D)); Mu = size(M, D);
sigma = size(M); Mean = size(D,1); k=0;
for j=1:M,
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if (j
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