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PREDICTION OF FRACTAL TIME SERIESUSING RADIAL BASISFUNCTION NEURAL

NETWORKS
Edwin Hernandez
Neural Networks class project

December 11, 2000

Fractal time series can be predicted using radial basis function neural networks (RBFNN). We showed that
RBFNN effectively predict the behavior of self-similar patterns for the cases where their degree of self-similarity
(H) is close to the unity. In addition, we observed the failure of this method when predicting fractal series when H
is0.5.

1. Introduction

We will first review the meaning of the termfractal . The concept of afractal is most often associated
with geometrical objects satisfying two criteria: self-similarity and fractional dimensionality. Self-
similarity means that an object is composed of sub-units and sub-sub-units on multiple levels that
(statistically) resemble the structure of the whole object. Mathematically, this property should hold on
all scales. However, in the real world, there are necessarily lower and upper bounds over which such
self-similar behavior applies. The second criterion for afractal object is that it has afractional
dimension. This requirement distinguishes fractals from Euclidean objects, which have integer
dimensions. As asimple example, asolid cube is self-similar since it can be divided into sub-units of 8
smaller solid cubes that resemble the large cube, and so on. However, the cube (despite its self -
similarity) isnot afractal because it has an (=3) dimension. [1]

The concept of afractal structure, which lacks a characteristic length scale, can be extended to the
analysis of complex temporal processes. However, a challenge in detecting and quantifying self-similar
scaling in complex time seriesis the following: Although time series are usually plotted on a 2-
dimensional surface, atime series actually involves two different physical variables. For example, in
Figurel. the horizontal axis represents " "time," while the vertical axis represents the value of the variable
that changes over time. These two axes have independent physical units, minutes and bytes/sec
respectively (For example). To determineif a 2-dimensional curveis self-similar, we can do the
following test: (i) take a subset of the object and rescale it to the same size of the original object, using
the same magnification factor for both its width and height; and then (ii) compare the statistical
properties of the rescaled object with the original object. In contrast, to properly compare a subset of a
time series with the original data set, we need two magnification factors (along the horizontal and
vertical axes), since these two axes represent different physical variables.
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Self-Similarity of a Time Series
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Fig. 1. Fractal time series

In the different windows observed, h, and h.,, we can observe alinear dependency between the
variances and windows sizes. In other words, the slope a is determined by (log(s,) —log(s,))/(log(h,) -
log(h,)). Thisslope valueisalso called Hurst parameter (H) and in general avalue of 0.5 indicates a
completely brownian process, whereas 0.99 indicates highly fractal.

The research conducted by Sally Floyd and Vern Paxon [2] concluded that network traffic is fractal in
nature and H>0.6. Therefore, RBFNN could be used in thisfield for network traffic control and
analysis. Indeed, we made use of Vern Paxson’s[3,4] method to generate a fractal trace based upon the
fractional gaussian noise approximation. The inputs of the Paxson’s program developed are: media,
variance, Hurst parameter, and the amound of data. We decided to maintain amedia at zero, m= 0, and

the variance Szzl, and 65536 points. Figures 2 and 3, depict the fractal time series at different sampling
windows
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Fig. 2. Fractal sequence sampled at different intervals H=0.5, m=0 and s?=1

Fig 2. depicts the generated sampled used for training and testing of the GBRF. The signal is composed
of 65536 data samples, ranging between 4 and —4, although we only used 10000 points for training and
10000 points for testing. Similarly, Fig. 3 presents the histogram and fast Fourier transform
corresponding to theinput in Fig. 2.
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Fig. 3. Histogram and fast Fourier transform of the self-similar sequence H=0.5
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Fig. 4. Fractal sequence sampled at different intervals H=0.9, m=0and s =1

In addition, Fig 4 and Fig 5 show the input data at H=0.9. Both plots show a big difference in the
frequency domain among the time series with different values of H. This difference allow usto
speculate that RBFNN will be able to perform much better than in the purely random case.
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Fig. 5 Histogram and fast Fourier transform of the self-similar sequence H=0.9

2. Radial basisfunctions

A radial basis function, like an spherical Gaussian, is afunction which is symmetrical about a given
mean or center point in amulti-dimensiona space [5]. In the Radial Basis Function Neural Network
(RBFNN) a number of hidden nodes with radial basis function activation functions are connected in a
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feed forward parallel architecture Fig 6.. The parameters associated with the radial basis functions are
optimized during training. These parameter values are not necessarily the same throughout the network
nor directly related to or constrained by the actual training vectors. When the training vectors are
presumed to be accurate ie. Non-stochastic, and it is desirable to perform a smooth interpolation
between them, then alinear combination of radial basis functions can be found which gives no error at
the training vectors. The method of fitting radial basis functions to data, for function approximation, is
closely related to distance-weighted regression. Asthe RBFNN is a general regression techniqueit is
suitable for both function mapping and pattern recognition problems.

. Fig. 6. Radial basis function representation with k-outputs, M-clusters and d-inputs.

The equation required by a Gaussian radial basis function (GRBF) equations are shown as follows:

& yv. ml° 06
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Yie(X) = 5 WiF (%) (Eq. 2)
_1o o Ny _ 4N
E—Ean akl{yk(x) tk} (Eg. 3)

In al cases,nl {1, ..,N}, or the number of patterns, whilekT {1, .., K} or the number of outputs, and |
I {1, .., M} or the number of clusters used on the network.

According to Bishop [6] the solution for the weight matrix is defined as follows:
W' =F(F)'T whereall these matrices are defined by:

W= {W}
F :{Fnj }, and Fnj :Fj x™
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T={Tw} T =1t
And, finally, Y=( Y, }, Y=F W'

Therefore, the weight matrix can be calculated with the formula:
W =F*T
Since F isanon-sguared matrix the pseudo inverse is required to calculate the matrix W.

3. RBFNN and radial basisfunctionsimplemented.

The input to the MATLAB code match up to afile generated by the fractal generator. The set of input
data of the fractal file had to be rearranged and organized such that the number of inputs, D, stimulated
M- GRBFs. The element D+1 of the sequence was considered as the output. Hence, each sequence of
D-inputs will produce one output, which is can be arranged as follows:

{x} =t{{nl.x[n- 11,¥n- 2,¥n- 3....xn- D]}
Thisset {x;} determinesthe outputt,", which is x[n+1]. This output is used for training of the RBFNN.

Each term on the { x;} inputs, generates a set of M and S input values, where {jT 1.M},and{i T 1..N/
(D-1)}. The datais subdivided in N/(MXD-1)) clusters of D-dimension from which m and S are
calculated. This calculation was done at the cluster of data by first sorting the data according to tkn or

the expected outcome. By sorting the (x} via tkn we will be able to cluster the input hence each
independent basis function will represent a cluster of inputs which can generate a similar outcome.

Hence, it would be expected to have a better predictable value for bigger values of M, or by decreasing
the granularity of the cluster. For instance, with d=2, and M=100, given an training set N=3000, we will
have acluster j=1

The cluster of size 10 will haveam and m, , which are the medias of the 10 elementsiin the first and

second columns respectively. The variance is determined using all the elements in the cluster, or both
columns are rows. Hence, it would be expected that for a big cluster, or asmall value of M and a high-
dimensionality this method lead to bigger error during the approximation.

4. Resultsand experimental prediction using radial basis functions.

Oncethe{F } matrix isdetermine, aswell asthe weight vector W, we proceeded to test the RBFNN
with some input data.

Table 1. Variation of M and the mean square error of the training sample at different Hurst parameters

Degree of Self-
similarity
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Hurst Parameter
M-
d-Dimension GBRFs 0.9 0.5
2 10 0.396 0.508
20 0.369 0.507
50 0.349 0.514
100 0.352 0.521
200 0.727 0.546
4 10 0.430 0.511
20 0.410 0.512
50 0.380 0.523
100 0.372 0.537
200 0.384 0.565
8 10 0.501 0.524
20 0.516 0.533
50 0.466 0.566
100 0.479 0.597
200 0.562 0.768
16 10 0.561 0.542
20 0.561 0.575
50 0.676 2.735
100 4.004 29.107
200 435.043 8.597

We made use of a sequence, as big as the training input (10000 points). Table 1 depicts the results of the
mean square error at different degrees of self-similarity as well as the number of hidden nodes or basis
functions used (M).
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Fig 7. Error and comparison between predicted and real sampled signal for d=2 and M=50. Input signal
for H=0.9, 10000 samples used for training

All the input sequences were compared between the original and the predicted input. The best
prediction and smaller mean square error (M SE) was observed with d=2, M=50 and H=0.9. This
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behavior can be shown also in the qualitative shape shown in Fig. 7. Where the predicted and real
sampled data are very similar and the predicted data follows the real sequence. Although the magnitudes
are missing, the RBFNN was able to produce a nice inpui.
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Fig.8. Error and comparison between predicted and real sampled signal for d=16 and M=200. | nput
signal for H=0.9, 10000 samples used for training
Meanwhile, Fig. 8, shows the results obtained with H=0.9, M=200, d=16 where we observe that there is
over-estimation on the predicted sequence, which makes the error grow significantly. Those over
estimations are not plotted in the figure but rounded between 10 to 20 in magnitude.

Notwithstanding, the M SE seems to grow to unreasonable values, qualitatively the shape of the
predicted sequence follows the real testing sample data.
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Fig 9. Error and comparison between predicted and real sampled signal for d=2 and M=20. Input signal
for H=0.5, 10000 samples used for training
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Besides the test executed to the input sequence with H=0.9, Fig. 9 and Fig. 10, depict the behavior of the
RBFNN under H=0.5 stimulation. Both plots show the poor performance of the RBFNN when this type
of stimulation was employed. In fact, Table 1, presents that the minimum MSE was of 0.5, whereas
with H=0.9 the minimum was around 0.3. We haveto clarify that for each data set used the RBFNN
was trained and its weight matrix calculated using a set of the same input pattern. The performance of
the neural network was tested using atraining pattern using the same as in the training set.

Asshow in Fig. 10, the worst performance of the RBFNN was observed when using 16 inputs (d=16) to
determine the a predicted pattern and M=100. Although, the error is higher than the M SE measured in
Fig 9, qualitatively this shape seemsto follow the real sequence used as input.

Presicizn ame
3

L || |_|||

5 L L L L L |
s 1 200 300 400 500 600

J !'.| |I | | [
' ﬁ|.~1“'r| r\ ||"t r'l:-n , .||| |I(|.+ |" ||||'

Rl a=d precicied Dizla

| |
IR R RS 1A | R B A ¥ I 110 SO G S Z-'.\J:'-..._,.l |l |
I £ y EREL | \ il

Fig 10. Error and comparison between predicted and real sampled signal for d=16 and M=100. Input
signal for H=0.5, 10000 samples used for training

CONCLUSIONS

Fractal time series can be predicted using RBFNN when the degree of self-similarity, Hurst parameter,
isaround 0.9. The mean sguare error (M SE) of the real and predicted sequences was measured to be
0.36 asaminimum. Meanwhile, fractal series with H=0.5 cannot be predicted as well as the ones with

higher values of H.

It was expected that due the clustering process, a better approximation could be achieved using a greater
value of M and small dimensionality, however behavior was not observed and in contrast, the

performance had and optimal point at M=50 using d=2. This phenomenawould require a deeper study
and it is out of the scope of this class report.
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MATLAB CODE USED FOR THE NEURAL NETWORK AND SELF SIMILAR TRACE PRE-

APPENDICES
PROCESSING
% Fractal sequence processing
% Edwi n Her nandez
%selfSimlar = input (' Input the nane of the file with self-simlar

% content ');

| oad sel fSimlarHO5;
x_1 1:10;

si ze(10);

si ze(100);

si ze(100);

si ze(1000);
si ze(1000);
si ze(10000);
si ze(10000);

_"_I—‘I—‘I—‘I—‘

y_1
X_2
y_2
x_3
y_3
x_4
y_4
j_1
j_2
j_3
j_4
fo or

~1: 10000,
(mod(i, 1000) == 0)
= se

x_1(j_1) ;
y_1(j_1) [ fSimlarHO5(i);
1 =j_1+ 1
end
if (mod(i, 100) == 0)
x_2(j_2) =1i;
y 2(j_2) = selfSimlarHO5(i);
j 2=j_2+1;
end
if (nmod(i, 10) == 0)
x_3(j_3) =1i;
y 3(j_38) = selfSimlarHO5(i);
i 3 =j_8+1;
end
X_4(i)
y_4(i)
end

i
sel fSim | arHO5(i);

subplot(2,2,1);

plot(x_1, y_ 1);

title(' Sanpl ed at 1000 sec', 'FontSize', 8 );
%l abel ("tinme (s)',' FontSize', 8 );

yl abel (' Data', "' Font Size', 8 );

subpl ot (2, 2, 2);

plot(x_2, y_2);

title(' Sanpled at 100 sec','FontSize', 8 );
%Il abel ("tinme (s)',' FontSize', 8 );

yl abel (' Data ',' FontSize', 8 );

subpl ot (2, 2, 3);

plot(x_3, y_3);

title(' Sanpled at 10 sec','FontSize', 8 );
xlabel ("tine (s)', ' FontSize', 8 );

yl abel (' Data',"' Font Si ze', 8 );
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subpl ot (2, 2, 4);

plot(x_4, y_4);

title(' Sanpled at 1 sec','FontSize', 8 );
xlabel ("tinme (s)',' FontSize', 8 );

yl abel (' Data',' FontSize', 8 );

pause
subpl ot (2,1,2), plot(log(abs(fft(y 4, 1024)))):

title(' Fast fourier transform (1024 sanples)',' FontSize'

yl abel (' | 0g10', ' FontSize', 8);
x|l abel (' frequency donmain', 'FontSize', 8);

subplot(2,1,1), hist(y_4,100);

xl abel (' Data in 100 bins','FontSize',8);
yl abel (' Sanpl es', ' Font Si ze', 8);

title('" Hi stogram','FontSize', 8);

pause
H=20
for

i=1:H1,
x(i) si ze(round(10000/ H));
end
yk = size(round(10000/5));
%4 y 1 output to create Yk sanples
=1
| oad sel fSimlarHO9;
for i=1:H: 10000,

for k=0:H- 2,
x1(j) = selfSimlarHO9(i +k);
end
yk(j) = selfSimlarHO9(i+k+1);
j=j+H;
end

subpl ot (5,1,1), plot(xl);
subpl ot (5,1, 2), plot(x2);
subpl ot (5,1, 3), plot(x3);
subpl ot (5,1,4), plot(x4);
subpl ot (5,1,5), plot(yk);
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% Gaussi an radi al basis functions
72
% Edwi n Her nandez

% Modified to sort the clusters and then find the Mi's and the signas.
%if ME100 | will sort all the clusters in 100 piles.

D=16;

M=200;

| oad sel fSimlarH09

NDATA = 10000;

% get all the chunks and the T matrix

% out of all the inputs only 65500 I'I| use
k=1;

X
t

si ze(round( NDATA/ (D+1)), D);
si ze(round( NDATA/ (D+1)));

for j=1:round(NDATA/ (D+1)),

for i=1:D,
X(j,i) = selfSimlarHO9(k);
k=k+1;
end
k=k+1;
t(j) = selfSimlarHO9(Kk);
end
u = size(size(x), D+l);
u=_[x, t'];
u = sortrows(u, D+1);

X = u(l:size(x), 1.D;
[R C] =size(x);

t = u(CR+t1: (C+t1)*R) ' ;
Y%pause;

%ewd = pwd;
Y%cd(tenpdir);

Y%pack

%d(cwd)

L = size(t);
cluster = floor(R*C/(MD));
Mu = size(M D);
sigma = size(M;
Mean = size(D, 1);
k=0;
for j=1: M
if (<M
z= x(k+1l:j*cluster,1:D);
k=j *cl uster;
[1,c]=size(z);
sigma(j) = cov(z(1l:1*c));
Mean = nean(z);
Y%pause;
el se
z= x(k+1: R 1:D);
k=j *cl uster;
[1,c]=size(z);
sigma(j) = cov(z(1l:1*c));
Mean =mean(z);
end
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for i=1:D,
Mu(j, i) =Mean(i);
end

end

cwd = pwd;
cd(tenpdir);
pack

cd(cwd)

Phi = size(M round(NDATA/ (D+1))); %M GBRF ....
for j=1: M
for k=1:round(NDATA/ (D+1)),
dist = 0;
for i=1:D,
dist = dist + (x(k, i) - M(j, i))"2;
end
Phi (j, k) = exp( -2*dist/(2*sigma(j)));
end
end

cwd = pwd;
cd(tenpdir);
pack

cd(cwd)

% Wei ght matrix .
W= size(M 1);
W= pinv(Phi)'*t;

X_test = size(round(NDATA/ (D+1)), D);
t _test = size(round(NDATA/ (D+1)));
k=NDATA+1;
for j=1:round( NDATA/ (D+1)),
for i=1:D,
X_test(j,i) = selfSimlarHO9(K);
k=k+1;
end
k=k+1;
t test(j) = selfSimlarHO9(K);
end

error = size(round( NDATA/ (D+1)));
y = size(round(NDATA/ (D+1)));

Phi _out = size(M;

meanSQRerror = 0

for k=1:round( NDATA/ (D+1)),

for j=1: M
di st = 0;
for i=1:D,
dist = dist + (x_test(k, i) - M(j, i))"2;
end
Phi _out(j) = exp( -2*dist/(2*sigma(j)));
end

y(k) = Phi_out*W
error(k) =vy(k) - t_test(k);
meanSQRerror = 0.5%(y(k)-t_test(k))”*2+nmeanSQRerror;
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i f abs(y(k))>=5

y(k) =5;
end

if abs(error(k))>=5
error (k) =5;
end

end

fprintf(' The nean square error is : %', meanSQRerror);
c=r ound( NDATA/ (D+1));

subplot(2,1,1), plot(1:c, error);

title(' Prediction error ','FontSize', 8);
%subplot(3,1,2), hist(error, 100);

%itle(" Error histogram', 'FontSize', 8);
subplot(2,1,2), plot(1l:c, t_test(l:c), 'r:',1:c, Vy);
title(' Real and predicted Data ', 'FontSize', 8);

| egend(' Real ', " predicted');
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